10.6 Kaplan Meier survival estimator
We will use the excellent survival package to produce the Kaplan Meier (KM) survival estimator (Terry M. Therneau and Patricia M. Grambsch (2000), Therneau (2020)). This is a non-parametric statistic used to estimate the survival function from time-to-event data.
library(survival)
survival_object <- melanoma %$%
Surv(time, status_os)
# Explore:
head(survival_object) # + marks censoring, in this case "Alive"
## [1] 10 30 35+ 99 185 204
10.6.1 KM analysis for whole cohort
10.6.2 Model
The survival object is the first step to performing univariable and multivariable survival analyses.
If you want to plot survival stratified by a single grouping variable, you can substitute “survival_object ~ 1” by “survival_object ~ factor”
# Overall survival in whole cohort
my_survfit <- survfit(survival_object ~ 1, data = melanoma)
my_survfit # 205 patients, 71 events
## Call: survfit(formula = survival_object ~ 1, data = melanoma)
##
## n events median 0.95LCL 0.95UCL
## 205.00 71.00 NA 9.15 NA
10.6.3 Life table
A life table is the tabular form of a KM plot, which you may be familiar with.
It shows survival as a proportion, together with confidence limits.
The whole table is shown with, summary(my_survfit)
.
## Call: survfit(formula = survival_object ~ 1, data = melanoma)
##
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
## 0 205 0 1.000 0.0000 1.000 1.000
## 1 193 11 0.946 0.0158 0.916 0.978
## 2 183 10 0.897 0.0213 0.856 0.940
## 3 167 16 0.819 0.0270 0.767 0.873
## 4 160 7 0.784 0.0288 0.730 0.843
## 5 122 10 0.732 0.0313 0.673 0.796
References
Terry M. Therneau, and Patricia M. Grambsch. 2000. Modeling Survival Data: Extending the Cox Model. New York: Springer.
Therneau, Terry M. 2020. A Package for Survival Analysis in R. https://CRAN.R-project.org/package=survival.